

E35

Aciers revêtus d'un alliage zinc-aluminiummagnésium Magnelis[®]

Ce produit est idéal pour une utilisation dans les domaines de la construction et du génie civil, où une bonne résistance à la corrosion dans des environnements très agressifs (par exemple, des

environnements riches en chlorure ou fortement alcalins) est nécessaire.

Date de mise à jour: 2011-10-5

Propriétés

Le Magnelis[®] est un produit plat carbone revêtu sur les deux faces d'un alliage zinc-aluminium-magnésium. Cet alliage est composé de 93,5% de zinc, de 3,5% d'aluminium et de 3% de magnésium. L'acier est revêtu en continu sur une ligne de galvanisation au trempé. Cette composition chimique optimale a été choisie pour offrir les meilleurs résultats en termes de résistance à la corrosion.

Les aciers revêtus de Magnelis[®] sont disponibles dans une très large gamme de qualités d'aciers : aciers pour formage à froid et emboutissage, aciers de construction et aciers faiblement alliés à haute limite d'élasticité.

Avantages

Grâce à sa teneur en magnésium de 3%, le Magnelis[®] permet l'autorégénération sur les rives cisaillées et une meilleure résistance à la corrosion dans des environnements riches en chlorure et en ammoniac. En raison de cette résistance élevée à la corrosion, une quantité moindre de revêtement métallique est nécessaire (allègement), ce qui facilite les étapes du processus de fabrication telles que le soudage.

La composition riche en zinc du revêtement permet tous les procédés habituels possibles avec les aciers standard galvanisés à chaud : le pliage, l'emboutissage, le clinchage, le profilage, le poinçonnage, le soudage, etc. Le coefficient de frottement de l'acier revêtu Magnelis[®] est plus bas que celui des aciers galvanisés à chaud traditionnels et reste stable durant les opérations de mise en forme.

Applications

Les applications industrielles du Magnelis® sont nombreuses, citons par exemple :

- la construction : profilés, matériaux de structure, bardages, chemins de câbles, métal déployé, moules à béton
- les travaux publics et le génie civil : plateformes pour parkings, panneaux muraux d'isolation acoustique, murs de protection contre la grêle
- l'agriculture et l'élevage : étables, structures de serre
- les applications routières et ferroviaires : équipement de sécurité et de protection

Conseils pour l'utilisation de nos aciers

Stockage

Le Magnelis[®] est livré à l'état passivé et/ou huilé, afin de limiter temporairement le risque de formation de rouille blanche. Le transport et le stockage de l'acier doivent être effectués à l'abri et en l'absence d'humidité.

Formage et assemblage

Les techniques de formage et d'assemblage habituellement utilisées pour les aciers galvanisés sont également d'usage pour le Magnelis[®]. Le Magnelis[®] se prête très bien aux opérations de profilage. Il faut choisir une épaisseur de revêtement qui assure une bonne aptitude à la mise en forme et à l'assemblage sans concession sur le niveau requis de résistance à la corrosion.

Soudabilité

Le soudage par résistance électrique nécessite d'adapter et de rajuster régulièrement l'intensité du courant. La durée de vie des électrodes peut être prolongée par rectification régulière et utilisation d'une qualité d'alliage appropriée des électrodes.

Dimensions

Aciers pour formage à froid et emboutissage

Epaisseur (mm)	Largeur mini	DX51D +ZM, DX52D +ZM Largeur maxi	DX53D +ZM, DX54D +ZM, DX56D +ZM, DX57D +ZM Largeur maxi
0,45 ≤ ép. < 0,50	850	1500	
0,50 ≤ ép. < 1,60	600	1640	1640

Pour d'autres dimensions, veuillez nous contacter.

Aciers de construction

Epaisseur (mm)	Largeur mini	S220GD +ZM, S250GD +ZM, S280GD +ZM	S320GD +ZM, S350GD +ZM	S390GD AM FCE +ZM
(11111)	1111111	Largeur maxi	Largeur maxi	Largeur maxi
0,45 ≤ ép. < 0,50	850	1500	1350	1130
0,50 ≤ ép. < 0,60		1640	1630	1630
0,60 ≤ ép. < 1,30	600	1640	1640	1640
1,30 ≤ ép. < 1,40	600	1620	1620	1620
1,40 ≤ ép. < 1,60		1540	1540	1540

Pour d'autres dimensions, veuillez nous contacter.

Aciers micro-alliés à haute limite d'élasticité

HX260LAD +ZM, HX300LAD

HX340LAD + ZM, HX380LAD + ZM,

Page 2 of 5

Epaisseur (mm)	Largeur mini	+ZM Largeur maxi	HX420LAD +ZM Largeur maxi
0,45 ≤ ép. < 0,50	850	1500	1135
0,50 ≤ ép. < 1,30		1650	1650
1,30 ≤ ép. < 1,40	600	1620	1620
1,40 ≤ ép. < 1,60		1545	1545

Pour d'autres dimensions, veuillez nous contacter.

Caractéristiques mécaniques

Aciers pour formage à froid et emboutissage

	Direction	Epaisseur (mm)	$\mathbf{R_e}$ (MPa)	$\mathbf{R_m}$ (MPa)	A ₈₀ (%)	r 90	n 90
DX51D +ZM	т	0,45 - 0,7		270 - 500	≥ 20		
DX31D +ZM	'	0,7 - 2	_	270 - 300	≥ 22	_	-
DX52D +ZM	т	0,45 - 0,7	140 200	270 - 420	≥ 24		/
שלאס אליים	ı	0,7 - 2	140 - 300	270 - 420	≥ 26	_	-
DX53D +ZM	т	0,45 - 0,7	140 260	260 270 - 380	≥ 28		
שאטטש דצויו		0,7 - 2	140 - 200	270 - 360	≥ 30	-	-
DX54D +ZM	т	0,45 - 0,7	170 220	260 - 350	≥ 34	~ 1 6	> 0 100
שאטיים דצויו		0,7 - 2	120 - 220	200 - 350	≥ 36	≥ 1,0	≥ 0,180
DX56D +ZM	т	0,45 - 0,7	120 - 180	260 250	≥ 37	> 1 0	> 0.710
DAGOD TZM		0,7 - 2	120 - 100	260 - 350	≥ 30	≥ 1,9	≥ 0,210
DV57D ±7M	т	0,45 - 0,7	120 - 170	260 250	≥ 39	≥ 1,9	> 0 220
DX57D +ZM	Ī ***	0,7 - 2	120 ~ 1/0	260 - 350	≥ 41	≥ 2,1	≥ 0,220

Aciers de construction

	Direction	Epaisseur (mm)	R _e (MPa)	R _m (MPa)	A ₈₀ (%)	r 90	n 90
S220GD +ZM		0,45 - 0,7	≥ 220	≥ 300	≥ 18	9	
3220GD +ZM	L	0,7 - 2	≥ 220	≥ 300	≥ 20	-	_
S250GD +ZM	ı	0,45 - 0,7	≥ 250	≥ 330	≥ 17		
3230GD 72M	L	0,7 - 2	≥ 250	≥ 330	≥ 19	-	-
S280GD +ZM	L	0,45 - 0,7	> 200	≥ 360	≥ 16		
3280GD 72M		0,7 - 2	≥ 280		≥ 18	-	-
S320GD +ZM	ı	0,45 - 0,7	≥ 320	≥ 390	≥ 15		
3320GD 7214	L	0,7 - 2	≥ 32U	2 390	≥ 17	-	-
S350GD +ZM	ſ	0,45 - 0,7	≥ 350	> 420	≥ 14	,	**************************************
3330GD TZM	L .	0,7 - 2	≥ 350	≥ 420	≥ 16	-	-

S390GD AM FCE +ZM	L	0,45 - 0,7 0,7 - 2	≥ 390	≥ 460	≥ 14 ≥ 16	
Qualité en italique : non i		ans la norme		2 . 5 · · · 200 5 5 2 · · · · · · · · · · · · · · · · ·	44 · 52 · 5 · 5 · 5 · 5 · 6 · 6 · 6 · 6 · 6 · 6	The second secon

Aciers micro-alliés à haute limite d'élasticité

	Direction	Epaisseur (mm)	$\mathbf{R_e}$ (MPa)	R _m (MPa)	A ₈₀ (%)	r 90	n 90
HX260LAD +ZM	т	0,45 - 0,7	260 220	350 - 430	≥ 24		
HAZOULAD TZM	·	0,7 - 2	200 - 330	330 - 430	≥ 26	-	_
HX300LAD +ZM	Т	0,45 - 2	300 - 380	380 - 480	≥ 23	-	-
HX340LAD +ZM	Т	0,45 - 2	340 - 420	410 - 510	≥ 21	-	-
HX380LAD +ZM	Т	0,45 - 2	380 - 480	440 - 560	≥ 19	-	-
HX420LAD +ZM	Т	0,45 - 2	420 - 520	470 - 590	≥ 17	-	-

Analyses chimiques

Aciers pour formage à froid et emboutissage

	C (%)	Mn (%)	P (%)	S (%)	Si (%)	AI (%)	Nb (%)	Ti (%)
DX51D +ZM	≤ 0,120	≤ 1,20	≤ 0,100	≤ 0,045	≤ 0,50	-	_	≤ 0,300
DX52D +ZM	≤ 0,120	≤ 0,60	≤ 0,100	≤ 0,045	≤ 0,50	_	_	≤ 0,300
DX53D +ZM	≤ 0 , 120	≤ 0,60	≤ 0,100	≤ 0,045	≤ 0,50	_	-	≤ 0,300
DX54D +ZM	≤ 0 , 120	≤ 0,60	≤ 0,100	≤ 0,045	≤ 0,50	-	-	≤ 0,300
DX56D +ZM	≤ 0,120	≤ 0,60	≤ 0,100	≤ 0,045	≤ 0,50	_	-	≤ 0,300
DX57D +ZM	≤ 0,120	≤ 0,60	≤ 0,100	≤ 0,045	≤ 0,50	_	-	≤ 0,300

Aciers de construction

	C (%)	Mn (%)	P (%)	S (%)	Si (%)	AI (%)	Nb (%)	Ti (%)
S220GD +ZM	≤ 0,200	≤ 1,70	≤ 0,100	≤ 0,045	≤ 0,60	.	_	-
S250GD +ZM	≤ 0,200	≤ 1,70	≤ 0,100	≤ 0,045	≤ 0,60	-	_	-
S280GD +ZM	≤ 0,200	≤ 1,70	≤ 0,100	≤ 0,045	≤ 0,60	_	_	-
S320GD +ZM	≤ 0,200	≤ 1,70	≤ 0,100	≤ 0,045	≤ 0,60	_	-	_
S350GD +ZM	≤ 0,200	≤ 1,70	≤ 0,100	≤ 0,045	≤ 0,60	_	-	_
S390GD AM FCE +ZM	≤ 0,200	≤ 1,70	≤ 0,100	≤ 0,045	≤ 0,60	-	-	-
Qualité en italique : non incluse dans la norme								

Aciers micro-alliés à haute limite d'élasticité

	C (%)	Mn (%)	P (%)	S (%)	Si (%)	AI (%)	Nb (%)	Ti (%)
HX260LAD +ZM	≤ 0,100	≤ 0,60	≤ 0,025	≤ 0,025	≤ 0,50	≥ 0,015	≤ 0,090	≤ 0,150
HX300LAD +ZM	≤ 0,100	≤ 1,00	≤ 0,025	≤ 0,025	≤ 0,50	≥ 0,015	≤ 0,090	≤ 0,150
HX340LAD +ZM	≤ 0,100	≤ 1,00	≤ 0,025	≤ 0,025	≤ 0,50	≥ 0,015	≤ 0,090	≤ 0,150
HX380LAD +ZM	≤ 0,100	≤ 1,40	≤ 0,025	≤ 0,025	≤ 0,50	≥ 0,015	≤ 0,090	≤ 0,150
		}		i				

HX420LAD +ZM

 $\leq 0,100 \leq 1,40 \leq 0,025 \leq 0,025 \leq 0,50 \geq 0,015 \leq 0,090 \leq 0,150$

Caractéristiques du revêtement

Magnelis® Poids du revêtement - deux faces (g/m²) Epaisseur du revêtement (µm par face)

ZM90	90	7
ZM120	120	10
ZM175	175	14
ZM195	195	16
ZM250	250	20
ZM310	310	25

Pour des informations commerciales (cotations, livraisons, disponibilité produits) :

• Europe : http://www.arcelormittal.com/fce/prg/agencies_map.html

• D'autres pays : <u>contact@arcelormittal.com</u>

Pour des questions techniques sur ces produits : fce.technical.assistance@arcelormittal.com Pour des chercheurs : cliquez ici

Toutes les informations figurant dans le catalogue d'ArcelorMittal Flat Carbon Europe S.A. ne sont données qu'à titre indicatif. ArcelorMittal Flat Carbon Europe S.A. se réserve le droit de modifier à tout moment et sans préavis sa gamme de produits.